Source code for simulations.util.DualPlots

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Jan 13 14:46:10 2022

@author: gabrielsoto
"""

from pylab import rc
import matplotlib.pyplot as plt
import pyomo.environ as pe
import numpy as np
import pint, copy
u = pint.UnitRegistry(autoconvert_offset_to_baseunit=True)
rc('axes', linewidth=2)
rc('font', weight='bold', size=12)
from util.PostProcessing import OutputExtraction
from util.PostProcessing import Plots
from util.PostProcessing import DispatchPlots
from util.SolarPlots import SolarOutputExtraction
from util.SolarPlots import SolarPlots
from util.SolarPlots import SolarDispatchPlots

[docs]class DualOutputExtraction(SolarOutputExtraction): """ The OutputExtraction class is a part of the PostProcessing family of classes. It extracts outputs from SSC or Dispatch models. Can be called from other plotting classes to extract outputs. """
[docs] def __init__(self, module): """ Initializes the OutputExtraction module The instantiation of this class receives a full module object, the module being one of the NE2 modules in the /neup-ies/simulations/modules directory. or a Dispatch module. Inputs: module (object) : object representing NE2 module class after simulations """ SolarOutputExtraction.__init__(self, module)
[docs] def set_ssc_outputs(self, mod_out): """ Method to set SSC outputs from module The method extracts SSC outputs and save them to arrays. The input to this method is a subclass to an NE2 class holding all outputs to simulations. Inputs: mod_out (object) : object representing Outputs subclass of NE2 module """ # saving some outputs for plotting self.p_cycle = np.asarray(mod_out.P_cycle) * u.MW self.gen = (np.asarray(mod_out.gen) * u.kW).to('MW') self.q_dot_rec_in = np.asarray(mod_out.q_dot_rec_inc) * u.MW self.q_thermal = np.asarray(mod_out.Q_thermal) * u.MW self.q_dot_nuc_in = np.asarray(mod_out.q_dot_nuc_inc) * u.MW self.q_nuc_thermal = np.asarray(mod_out.Q_nuc_thermal) * u.MW self.q_pb = np.asarray(mod_out.q_pb) * u.MW self.q_dot_pc_su = np.asarray(mod_out.q_dot_pc_startup) * u.MW self.m_dot_pc = np.asarray(mod_out.m_dot_pc) * u.kg/u.s self.m_dot_rec = np.asarray(mod_out.m_dot_rec) * u.kg/u.s self.m_dot_nuc = np.asarray(mod_out.m_dot_nuc) * u.kg/u.s self.T_pc_in = np.asarray(mod_out.T_pc_in) * u.degC self.T_pc_out = np.asarray(mod_out.T_pc_out) * u.degC self.T_tes_cold = np.asarray(mod_out.T_tes_cold) * u.degC self.T_tes_hot = np.asarray(mod_out.T_tes_hot) * u.degC self.T_cond_out = np.asarray(mod_out.T_cond_out) * u.degC self.e_ch_tes = np.asarray(mod_out.e_ch_tes) * u.MWh self.op_mode_1 = np.asarray(mod_out.op_mode_1) self.defocus = np.asarray(mod_out.defocus) self.price = np.asarray(self.mod.TimeOfDeliveryFactors.dispatch_factors_ts) # setting static inputs self.q_nuc_design = self.mod.SystemDesign.q_dot_nuclear_des * u.MW # receiver design thermal power self.p_pb_design = self.mod.SystemDesign.P_ref * u.MW # power block design electrical power self.eta_design = self.mod.SystemDesign.design_eff # power block design efficiency self.q_pb_design = (self.p_pb_design / self.eta_design).to('MW') # power block design thermal rating self.T_htf_hot = (self.mod.SystemDesign.T_htf_hot_des*u.celsius).to('degK') # heat transfer fluid Hot temp self.T_htf_cold = (self.mod.SystemDesign.T_htf_cold_des*u.celsius).to('degK') # heat transfer fluid Cold temp self.e_tes_design = (self.q_pb_design * self.mod.SystemDesign.tshours*u.hr).to('MWh') # TES storage capacity (kWht) # operating modes op_mode_result, modes_order = np.unique(self.op_mode_1, return_index=True) # mode orders and re-ordering self.op_mode_result = op_mode_result[np.argsort(modes_order)] # re-order modes by first appearance of each
[docs] def set_pyomo_outputs(self): """ Method to define list of Pyomo output arrays This method extracts outputs from the Pyomo Dispatch model, converts them to numpy arrays and saves them to `self`. """ OutputExtraction.set_pyomo_outputs(self) SolarOutputExtraction.set_pyomo_outputs(self)
[docs]class DualPlots(SolarPlots): """ The Plots class is a part of the PostProcessing family of classes. It can output results from SSCmodels. This might be a Sisyphus-ian task as some of the parameters are very unique to whatever plot you are trying to make, but will do my best to provide basic structures and templates to work off of. Note that the Plots class must be initialized before using. """
[docs] def __init__(self, module, **kwargs): """ Initializes the Plots module The instantiation of this class receives a full module object, the module being one of the NE2 modules in the /neup-ies/simulations/modules directory. It also contains various inputs relating to cosmetic parameters for matplotlib plots. Inputs: module (object) : object representing NE2 module class after simulations fsl (str) : fontsize for legend loc (str) : location of legend legend_offset(bool) : are we plotting legends off-axis? lp (int) : labelpad for axis labels lps (int) : labelpad for axis labels - short version fs (int) : fontsize for labels, titles, etc. lw (int) : linewidth for plotting x_shrink (float) : (legend_offset==True) amount to shrink axis to make room for legend """ SolarPlots.__init__(self, module, **kwargs)
[docs] def set_extractor(self): """ Setting the output extraction class """ self.extractor = DualOutputExtraction
[docs] def plot_SSC_power_and_energy(self, ax=None, title_label=None, plot_all_time=True, \ start_hr=0, end_hr=48, hide_x=False, x_legend=1.2, \ y_legend_L=1.0, y_legend_R=1.0): """ Method to plot power and energy data on single plot This method is used specifically to plot power and energy data from SSC simulation results. Built-in options to plot legend off-axis. Inputs: ax (object) : axis object to plot on plot_all_time(bool) : are we plotting all results or just a portion? title_label(str) : title name for plot start_hr (int) : (plot_all_time==False) hour used for starting index end_hr (int) : (plot_all_time==False) hour used for ending index hide_x(bool) : hiding the x-axis from this particular plot x_legend (float) : (legend_offset==True) x-offset defining left-most side of legend y_legend_L (float) : (legend_offset==True) y-offset of left y-axis plot y_legend_R (float) : (legend_offset==True) y-offset of right y-axis plot """ #========================# #--- Creating Figure ---# #========================# # if no axis object specified, create a figure and axis from it if ax is None: fig = plt.figure(figsize=[10, 5]) ax = fig.gca() # this is the power plot # twin axis to plot energy on opposite y-axis ax2 = ax.twinx() # this is the energy plot # custom y limits and ticks to be integers for Power #TODO: add these as some sort of input, maybe dict? ax.set_ylim(-100, 1100) ax.set_yticks([0, 250, 500, 750, 1000]) # plot Power arrays power_array_list = ['p_cycle', 'q_dot_rec_in', 'q_thermal', 'q_nuc_thermal', 'gen', 'q_dot_pc_su'] # list of array strings power_label_list = ['P_cycle (Electric)', 'Q_dot Receiver Incident (Thermal)', 'Q_dot to Salt from CSP (Thermal)', 'Q_dot to Salt from LFR (Thermal)', 'Power generated (Electric)', 'PC startup thermal power (Thermal)'] # list of labels for each array string to extract from Outputs power_ylabel = 'Power \n(MW)' ax = self.plot_SSC_generic(ax, array_list=power_array_list, \ label_list=power_label_list, \ y_label=power_ylabel, \ title_label=title_label, \ plot_all_time=plot_all_time, \ start_hr=start_hr, end_hr=end_hr, hide_x=hide_x) # custom y limits and ticks to be integers for Energy ax2.set_ylim(-0.05*self.e_tes_design.m, 1.05*self.e_tes_design.m) # plot Energy array(s) energy_array_list = ['e_ch_tes'] energy_label_list = ['Salt Charge Energy Level (Thermal)'] energy_ylabel = 'Energy \n(MWh)' ax2 = self.plot_SSC_generic(ax2, array_list=energy_array_list, \ label_list=energy_label_list, \ y_label=energy_ylabel, \ title_label=None, \ plot_all_time=plot_all_time, \ start_hr=start_hr, end_hr=end_hr, hide_x=hide_x, left_axis=False) # set line color to default C4 (purple) ax2.get_lines()[0].set_color("C6") #========================# #---- Setting Labels ----# #========================# # customizing legend(s) if self.legend_offset: ax.legend( loc=self.loc_ul, fontsize=self.fsl, bbox_to_anchor=(x_legend, y_legend_L)) # plot legend for Power arrays ax2.legend(loc=self.loc_ul, fontsize=self.fsl, bbox_to_anchor=(x_legend, y_legend_R)) # plot legend for Energy arrays and also else: ax.legend( loc=self.loc_ul, fontsize=self.fsl) # plot legend for Power arrays ax2.legend(loc=self.loc_ul, fontsize=self.fsl) # plot legend for Energy arrays and also
[docs] def plot_SSC_op_modes(self, ax=None, title_label=None, plot_all_time=True, \ start_hr=0, end_hr=48, hide_x=False, x_legend=1.2, \ y_legend_L=1.0, y_legend_R=1.0): """ Method to plot operating modes history on single plot This method is used specifically to plot operating modes and relative pricing data from SSC simulation results. Built-in options to plot legend off-axis. Inputs: ax (object) : axis object to plot on plot_all_time(bool) : are we plotting all results or just a portion? title_label(str) : title name for plot start_hr (int) : (plot_all_time==False) hour used for starting index end_hr (int) : (plot_all_time==False) hour used for ending index hide_x(bool) : hiding the x-axis from this particular plot x_legend (float) : (legend_offset==True) x-offset defining left-most side of legend y_legend_L (float) : (legend_offset==True) y-offset of left y-axis plot y_legend_R (float) : (legend_offset==True) y-offset of right y-axis plot """ #========================# #--- Creating Figure ---# #========================# # if no axis object specified, create a figure and axis from it if ax is None: fig = plt.figure(figsize=[10, 5]) ax = fig.gca() # this is the Op Modes plot # twin axis to plot pricing on opposite y-axis axO = ax # this is the OP modes plot ax2 = axO.twinx() # this is the pricing plot # custom y limits and ticks to be integers price = self.price[ start_hr:end_hr ] minP = 0 maxP = 1.05*price.max() spacing = 0.5 if maxP-minP < 2 else 1 ax2.set_ylim(minP, maxP) ax2.set_yticks( np.arange( minP, maxP, spacing) ) # plot price array(s) price_array_list = ['price'] price_label_list = [None] price_ylabel = 'Tariff \n($/kWh)' ax2 = self.plot_SSC_generic(ax2, array_list=price_array_list, \ label_list=price_label_list, \ y_label=price_ylabel, \ title_label=None, \ plot_all_time=plot_all_time, \ start_hr=start_hr, end_hr=end_hr, hide_x=hide_x, \ is_bar_graph=True, left_axis=False) #========================# #--- Rearranging Modes --# #========================# # time series of operating mode indeces op_mode_1 = self.op_mode_1 # array of unique mode indeces and the time-order in which they appear op_mode_unique, op_mode_order = np.unique(op_mode_1, return_index=True) # arranging unique modes by order in which they appear op_mode_unique = op_mode_unique[np.argsort(op_mode_order)] new_order = np.arange(1, len(op_mode_unique)+1) op_mode_ordered = copy.deepcopy( op_mode_1 ) for i,op in enumerate(op_mode_unique): op_mode_ordered[np.where(op_mode_ordered == op)] = new_order[i] self.op_mode_ordered = op_mode_ordered #========================# #--- original plot --# #========================# # plot operating mode arrays op_array_list = ['op_mode_ordered'] # list of array strings op_label_list = [None] # list of labels for each array string to extract from Outputs op_ylabel = '' # 'Operating \nMode' axO, d_slice, t_plot = self.plot_SSC_generic(axO, array_list=op_array_list, \ label_list=op_label_list, \ y_label=op_ylabel, \ title_label=title_label, \ plot_all_time=plot_all_time, \ start_hr=start_hr, end_hr=end_hr, hide_x=hide_x, \ return_extra=True) # custom y limits and ticks to be integers axO.set_ylim(0, len(op_mode_unique)+2 ) axO.set_yticks(np.arange(0, len(op_mode_unique)+2, 1)) #==================================================# #---- extract operating modes to designated array #==================================================# prop_cycle = plt.rcParams['axes.prop_cycle'] colors = prop_cycle.by_key()['color'] colors = np.tile( colors, 12 ) # time series of operating mode indeces op_mode_1 = self.op_mode_1[d_slice] # array of unique mode indeces and the time-order in which they appear op_mode_unique, op_mode_order = np.unique(op_mode_1, return_index=True) # arranging unique modes by order in which they appear op_mode_unique = op_mode_unique[np.argsort(op_mode_order)] # Plotting data points over the OP mode line with different colors and labels count = 0 for op in op_mode_unique: # getting unique operating modes inds = (op_mode_1 == op) # individual index getting plotted with unique color and label if np.sum(inds): axO.plot(t_plot[inds].m, (count+1)*np.ones(np.sum(inds)), 'o', color=colors[count], label=self.operating_modes[int(op)]) count +=1 #==================================================# #---- handling labels #==================================================# # list of unique op mode strings op_modes_labels = [self.operating_modes[int(l)] for l in op_mode_unique] # split strings by "__" and create dictionary of all subsystems (PC, TES, etc) op_modes_subsystem_splits = [op.split('__') for op in op_modes_labels] op_modes_dict = {subsys.split('_')[0]:[] for subsys in op_modes_subsystem_splits[0]} if "ITER_START" in op_modes_labels: op_modes_dict['ITER_START'] = [] for op_mode in op_modes_subsystem_splits: if 'ITER_START' in op_mode: op_modes_dict['ITER_START'].append( op_mode[0].split('_')[1] ) else: for subsys in op_mode: op_modes_dict[subsys.split('_')[0]].append( subsys.split('_')[1] ) max_chars = np.array([ len( max(op_modes_dict[subsys], key=len) ) for subsys in op_modes_dict.keys()]) new_tick_labels = [] for label in op_modes_labels: formatted_label = '' if label is "ITER_START": formatted_label += label else: for i,(c,s) in enumerate( zip(max_chars, op_modes_dict.keys()) ): if s is not "ITER_START": subsys_mode = label.split('__')[i].split('_')[1:] subsys_mode_label = '_'.join(subsys_mode) subsys_mode_label = subsys_mode_label.ljust(c+2,'_') # subsys_op_mode_label = "{0}_{1}".format(s,subsys_mode_label ) formatted_label += "{0}_{1}".format(s,subsys_mode_label ) + '__' new_tick_labels.append( formatted_label ) blahx = axO.set_yticks( np.arange(1,count+1) ) axO.set_yticklabels(new_tick_labels) for i,(ytick,color) in enumerate( zip(axO.get_yticklabels(), colors) ): current_label = "OFF" count = 0 for j, _ in enumerate(new_tick_labels[i]): if new_tick_labels[i][j:j + len('OFF')] == 'OFF': count +=1 if count == 3: axO.plot(t_plot.m, (i+1)*np.ones(len(t_plot.m)), '-k') ytick.set_color('k') else: ytick.set_color(color) #========================# #---- Setting Labels ----# #========================# # set OP Mode line color to black axO.get_lines()[0].set_color("w") plt.tight_layout()
# customizing legend(s) # if self.legend_offset: # ax.legend( loc=self.loc_ul, fontsize=self.fsl, bbox_to_anchor=(x_legend, y_legend_L)) # plot legend for Op Modes arrays # else: # ax.legend( loc=self.loc_ul, fontsize=self.fsl) # plot legend for Op Modes arrays
[docs] def set_operating_modes_list(self): """ Method to define list of operating modes This method creates a list of operating modes pertaining to the specific SSC module we are using. This particular list was taken from /ssc/tcs/csp_solver_core.h, in the `C_system_operating_modes` class. """ self.operating_modes = [ 'ITER_START', 'CR_OFF__PC_OFF__TES_OFF__NUC_ON', 'CR_SU__PC_OFF__TES_OFF__NUC_ON', 'CR_ON__PC_SU__TES_OFF__NUC_ON', 'CR_ON__PC_SB__TES_OFF__NUC_ON', 'CR_ON__PC_RM_HI__TES_OFF__NUC_ON', 'CR_ON__PC_RM_LO__TES_OFF__NUC_ON', 'CR_DF__PC_MAX__TES_OFF__NUC_ON', 'CR_OFF__PC_SU__TES_DC__NUC_ON', 'CR_ON__PC_OFF__TES_CH__NUC_ON', 'CR_ON__PC_TARGET__TES_CH__NUC_ON', 'CR_ON__PC_TARGET__TES_DC__NUC_ON', 'CR_ON__PC_RM_LO__TES_EMPTY__NUC_ON', 'CR_DF__PC_OFF__TES_FULL__NUC_ON', 'CR_OFF__PC_SB__TES_DC__NUC_ON', 'CR_OFF__PC_MIN__TES_EMPTY__NUC_ON', 'CR_OFF__PC_RM_LO__TES_EMPTY__NUC_ON', 'CR_ON__PC_SB__TES_CH__NUC_ON', 'CR_SU__PC_MIN__TES_EMPTY__NUC_ON', 'CR_SU__PC_SB__TES_DC__NUC_ON', 'CR_ON__PC_SB__TES_DC__NUC_ON', 'CR_OFF__PC_TARGET__TES_DC__NUC_ON', 'CR_SU__PC_TARGET__TES_DC__NUC_ON', 'CR_ON__PC_RM_HI__TES_FULL__NUC_ON', 'CR_ON__PC_MIN__TES_EMPTY__NUC_ON', 'CR_SU__PC_RM_LO__TES_EMPTY__NUC_ON', 'CR_DF__PC_MAX__TES_FULL__NUC_ON', 'CR_ON__PC_SB__TES_FULL__NUC_ON', 'CR_SU__PC_SU__TES_DC__NUC_ON', 'CR_ON__PC_SU__TES_CH__NUC_ON', 'CR_DF__PC_SU__TES_FULL__NUC_ON', 'CR_DF__PC_SU__TES_OFF__NUC_ON', 'CR_TO_COLD__PC_TARGET__TES_DC__NUC_ON', 'CR_TO_COLD__PC_RM_LO__TES_EMPTY__NUC_ON', 'CR_TO_COLD__PC_SB__TES_DC__NUC_ON', 'CR_TO_COLD__PC_MIN__TES_EMPTY__NUC_ON', 'CR_TO_COLD__PC_OFF__TES_OFF__NUC_ON', 'CR_TO_COLD__PC_SU__TES_DC__NUC_ON', 'CR_OFF__PC_OFF__TES_CH__NUC_ON', 'CR_OFF__PC_SU__TES_CH__NUC_ON', 'CR_OFF__PC_SU__TES_OFF__NUC_ON', 'CR_SU__PC_OFF__TES_CH__NUC_ON', 'CR_SU__PC_SU__TES_CH__NUC_ON', 'CR_SU__PC_SU__TES_OFF__NUC_ON', 'CR_OFF__PC_SB__TES_OFF__NUC_ON', 'CR_OFF__PC_SB__TES_CH__NUC_ON', 'CR_OFF__PC_SB__TES_FULL__NUC_ON', 'CR_OFF__PC_RM_LO__TES_OFF__NUC_ON', 'CR_OFF__PC_TARGET__TES_CH__NUC_ON', 'CR_OFF__PC_RM_HI__TES_OFF__NUC_ON', 'CR_OFF__PC_RM_HI__TES_FULL__NUC_ON', 'CR_SU__PC_SB__TES_OFF__NUC_ON', 'CR_SU__PC_SB__TES_CH__NUC_ON', 'CR_SU__PC_SB__TES_FULL__NUC_ON', 'CR_SU__PC_RM_LO__TES_OFF__NUC_ON', 'CR_SU__PC_TARGET__TES_CH__NUC_ON', 'CR_SU__PC_RM_HI__TES_OFF__NUC_ON', 'CR_SU__PC_RM_HI__TES_FULL__NUC_ON', 'CR_TO_COLD__PC_OFF__TES_CH__NUC_ON', 'CR_TO_COLD__PC_SU__TES_CH__NUC_ON', 'CR_TO_COLD__PC_SU__TES_OFF__NUC_ON', 'CR_TO_COLD__PC_SB__TES_OFF__NUC_ON', 'CR_TO_COLD__PC_SB__TES_CH__NUC_ON', 'CR_TO_COLD__PC_SB__TES_FULL__NUC_ON', 'CR_TO_COLD__PC_RM_LO__TES_OFF__NUC_ON', 'CR_TO_COLD__PC_TARGET__TES_CH__NUC_ON', 'CR_TO_COLD__PC_RM_HI__TES_OFF__NUC_ON', 'CR_TO_COLD__PC_RM_HI__TES_FULL__NUC_ON', 'ITER_END']
[docs]class DualDispatchPlots(DualPlots): """ The Plots class is a part of the PostProcessing family of classes. It can output results from Pyomo Dispatch models. Note that the DispatchPlots class must be initialized before using. """
[docs] def __init__(self, module, **kwargs): """ Initializes the Plots module The instantiation of this class receives a full Dispatch object, the module being one of the Pyomo Dispatch model created in the /neup-ies/simulations/dispatch directory. It also contains various inputs relating to cosmetic parameters for matplotlib plots. Inputs: module (object) : object representing Pyomo Dispatch Model with results fsl (str) : fontsize for legend loc (str) : location of legend legend_offset(bool) : are we plotting legends off-axis? lp (int) : labelpad for axis labels lps (int) : labelpad for axis labels - short version fs (int) : fontsize for labels, titles, etc. lw (int) : linewidth for plotting x_shrink (float) : (legend_offset==True) amount to shrink axis to make room for legend """ # initialize Plots class SolarDispatchPlots.__init__( self, module, **kwargs)
[docs] def set_plotter(self): """ Setting class for plotting """ self.plotter = DualPlots
[docs] def plot_pyomo_energy(self, ax=None, **kwargs): """ Method to plot energy data from Pyomo Dispatch on single plot This method is used specifically to plot energy data from Dispatch simulation results. Built-in options to plot legend off-axis. Inputs: ax (object) : axis object to plot on plot_all_time(bool) : are we plotting all results or just a portion? title_label(str) : title name for plot start_hr (int) : (plot_all_time==False) hour used for starting index end_hr (int) : (plot_all_time==False) hour used for ending index hide_x(bool) : hiding the x-axis from this particular plot x_legend (float) : (legend_offset==True) x-offset defining left-most side of legend y_legend_L (float) : (legend_offset==True) y-offset of left y-axis plot y_legend_R (float) : (legend_offset==True) y-offset of right y-axis plot """ SolarDispatchPlots.plot_pyomo_energy(self, ax=ax, **kwargs)
[docs] def plot_pyomo_power(self, ax=None, title_label=None, plot_all_time=True, \ start_hr=0, end_hr=48, hide_x=False, x_legend=1.2, \ y_legend_L=1.0, y_legend_R=1.0): """ Method to plot power and pricing data from Pyomo Dispatch on single plot This method is used specifically to plot power data from Dispatch simulation results. Built-in options to plot legend off-axis. Inputs: ax (object) : axis object to plot on plot_all_time(bool) : are we plotting all results or just a portion? title_label(str) : title name for plot start_hr (int) : (plot_all_time==False) hour used for starting index end_hr (int) : (plot_all_time==False) hour used for ending index hide_x(bool) : hiding the x-axis from this particular plot x_legend (float) : (legend_offset==True) x-offset defining left-most side of legend y_legend_L (float) : (legend_offset==True) y-offset of left y-axis plot y_legend_R (float) : (legend_offset==True) y-offset of right y-axis plot """ #========================# #--- Creating Figure ---# #========================# # if no axis object specified, create a figure and axis from it if ax is None: fig = plt.figure(figsize=[10, 5]) ax = fig.gca() # this is the power plot # twin axis to plot pricing on opposite y-axis ax2 = ax.twinx() # this is the pricing plot # plot energy arrays power_array_list = ['wdot_array', 'x_array', 'xr_array', 'xrsu_array', 'xn_array', 'wdot_s_array', 'wdot_p_array'] # list of array strings power_label_list = ['Cycle Out (E)', 'Cycle In (T)', 'Receiver Out (T)', 'Receiver Startup (T)', 'Nuclear Out (T)', 'Energy Sold to Grid (E)', 'Energy Purchased (E)'] # list of labels for each array string to extract from Outputs power_wts = np.linspace(6, 2, 6).tolist() power_ylabel = 'Power \n(MW)' ax = self.plot_SSC_generic(ax, array_list=power_array_list, \ label_list=power_label_list, \ y_label=power_ylabel, \ lw_list=power_wts, \ title_label=title_label, \ plot_all_time=plot_all_time, \ start_hr=start_hr, end_hr=end_hr, hide_x=hide_x) #========================# #--- Extra arrays ------# #========================# # retrieving arrays wdot_array = self.wdot_array.m x_array = self.x_array.m xr_array = self.xr_array.m xrsu_array = self.xrsu_array.m wdot_s_array = self.wdot_s_array.m wdot_p_array = self.wdot_p_array.m # vertical power line at midpoint power_vert = np.linspace( np.min([wdot_array, x_array, xr_array, \ xrsu_array, wdot_s_array, wdot_p_array]), np.max([wdot_array, x_array, xr_array, \ xrsu_array, wdot_s_array, wdot_p_array])*1.1, self.T ) # Line marking the midpoint line ax.plot(self.time_midway, power_vert, 'k--', linewidth=self.lw) #========================# #--- Double axis ---# #========================# # plot price array(s) price_array_list = ['p_array'] price_label_list = [None] price_ylabel = 'Tariff \n($/kWh)' ax2 = self.plot_SSC_generic(ax2, array_list=price_array_list, \ label_list=price_label_list, \ y_label=price_ylabel, \ title_label=None, \ plot_all_time=plot_all_time, \ start_hr=start_hr, end_hr=end_hr, hide_x=hide_x, \ is_bar_graph=True, left_axis=False) #========================# #---- Setting Labels ----# #========================# # customizing legend(s) if self.legend_offset: ax.legend( loc=self.loc_ul, fontsize=self.fsl, bbox_to_anchor=(x_legend, y_legend_L)) # plot legend for Power arrays else: ax.legend( loc=self.loc_ul, fontsize=self.fsl) # plot legend for Power arrays
[docs] def plot_pyomo_dual_bin(self, ax=None, title_label=None, plot_all_time=True, \ start_hr=0, end_hr=48, hide_x=False, x_legend=1.2, \ y_legend_L=1.0, y_legend_R=1.0): """ Method to plot solar binary data from Pyomo Dispatch on single plot This method is used specifically to plot data from Dispatch simulation results pertaining to nuclear binary values. Variables include whether nuclear plant is running (0 or 1), etc. Built-in options to plot legend off-axis. Inputs: ax (object) : axis object to plot on plot_all_time(bool) : are we plotting all results or just a portion? title_label(str) : title name for plot start_hr (int) : (plot_all_time==False) hour used for starting index end_hr (int) : (plot_all_time==False) hour used for ending index hide_x(bool) : hiding the x-axis from this particular plot x_legend (float) : (legend_offset==True) x-offset defining left-most side of legend y_legend_L (float) : (legend_offset==True) y-offset of left y-axis plot y_legend_R (float) : (legend_offset==True) y-offset of right y-axis plot """ #========================# #--- Creating Figure ---# #========================# # if no axis object specified, create a figure and axis from it if ax is None: fig = plt.figure(figsize=[10, 5]) ax = fig.gca() # this is the power plot # plot nuclear binary arrays recbin_array_list = ['yn_array', 'yr_array', 'yrhsp_array', 'yrsb_array', 'yrsd_array', 'yrsu_array', 'yrsup_array' ] # list of array strings recbin_label_list = ['Is Nuclear On?', 'Is Receiver On?', 'Is Receiver HSU Pen?', 'Is Receiver SB?', 'Is Receiver SD?', 'Is Receiver SU?', 'Is Receiver CSU Pen?' ] # list of labels for each array string to extract from Outputs recbin_wts = np.linspace(10, 1.5, 6).tolist() recbin_ylabel = 'CSP and LFR \nBinary \nVariables' ax = self.plot_SSC_generic(ax, array_list=recbin_array_list, \ label_list=recbin_label_list, \ y_label=recbin_ylabel, \ lw_list=recbin_wts, \ title_label=title_label, \ plot_all_time=plot_all_time, \ start_hr=start_hr, end_hr=end_hr, hide_x=hide_x) #========================# #--- Extra arrays ---# #========================# # vertical binary line at midpoint binary_vert = np.linspace( -0.5, 1.5, self.T ) # Line marking the midpoint line ax.plot(self.time_midway, binary_vert, 'k--', linewidth=self.lw) # set binary ticks and labels ax.set_yticks([0, 1]) ax.set_yticklabels(['No', 'Yes']) #========================# #---- Setting Labels ----# #========================# # customizing legend(s) if self.legend_offset: ax.legend( loc=self.loc_ul, fontsize=self.fsl, bbox_to_anchor=(x_legend, y_legend_L)) # plot legend for Nuclear arrays else: ax.legend( loc=self.loc_ul, fontsize=self.fsl) # plot legend for Nuclear arrays
[docs] def plot_pyomo_cycle_bin(self, ax=None, **kwargs): """ Method to plot power cycle binary data from Pyomo Dispatch on single plot This method is used specifically to plot data from Dispatch simulation results pertaining to cycle binary values. Variables include whether power cycle is running (0 or 1), etc. Built-in options to plot legend off-axis. Inputs: ax (object) : axis object to plot on plot_all_time(bool) : are we plotting all results or just a portion? title_label(str) : title name for plot start_hr (int) : (plot_all_time==False) hour used for starting index end_hr (int) : (plot_all_time==False) hour used for ending index hide_x(bool) : hiding the x-axis from this particular plot x_legend (float) : (legend_offset==True) x-offset defining left-most side of legend y_legend_L (float) : (legend_offset==True) y-offset of left y-axis plot y_legend_R (float) : (legend_offset==True) y-offset of right y-axis plot """ DispatchPlots.plot_pyomo_cycle_bin(self, ax=ax, **kwargs)