#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Apr 15 16:28:05 2022
@author: gabrielsoto
"""
import sys, copy
sys.path.append('..')
import numpy as np
import PySAM.NuclearMsptIndirectTes as NuclearMsptIndirectTes
from modules.GenericSSCModule import GenericSSCModule
from modules.IndirectNuclearTES import IndirectNuclearTES
from modules.SolarTES import SolarTES
from dispatch.DualIndirectDispatch import DualIndirectDispatch as DI
from dispatch.DualIndirectDispatch import DualIndirectDispatchParamWrap as DIP
from dispatch.DualIndirectDispatch import DualIndirectDispatchOutputs as DIO
from dispatch.SolarDispatch import SolarDispatchParamWrap as SDP
[docs]class DualIndirectTES(SolarTES):
"""
The DualPlantTES class intializes, updates, and runs SSC simulations through PySAM,
specifically for the SSC nuclear_mspt_tes module.
This is meant to simulate the intermediate cycle where the Nuclear and Solar
plants are both directly connected to the storage tank - power cycle loop.
That is, the Nuclear and Solar Power Tower heat parallel mass flows
of molten salt via respective heat exchangers. Each molten salt mass flow
then routes directly to the hot storage tank where it can be dispatched
out to the power cycle.
"""
[docs] def __init__(self, plant_name="nuclear_mspt_indirect_tes", json_name="model2",
dual=True, direct=False, **kwargs):
""" Initializes the DualPlantTES module
Inputs:
plant_name (str) : name of SSC module to run
json_name (str) : name of JSON script with input data for module
is_dispatch (bool) : boolean, if True runs Pyomo dispatch optimization
"""
# initialize Solar+Nuclear+Generic module, csv data arrays should be saved here
super().__init__( plant_name, json_name, dual=dual, direct=direct, **kwargs )
# define specific PySAM module to be called later
self.PySAM_Module = NuclearMsptIndirectTes
# define specific Dispatch module to be called later
self.Dispatch_Module = DI
# define the specific Dispatch Outputs module to be called later to create dispatch targets for SSC
self.Dispatch_Outputs = DIO
[docs] def initialize_arrays(self):
""" Initializing empty arrays to log SSC outputs after segment simulations
This method creates empty arrays where SSC outputs will be written to.
Also creates a list of str names for logged simulation outputs.
"""
u = self.u
# start and end times for full simulation
i_start = (self.SSC_dict['time_start'] * u.s).to('hr').m
i_end = (self.SSC_dict['time_stop'] * u.s).to('hr').m
# size of simulation arrays
N_sim = int( i_end - i_start )
# dictionary of output variable names to log after each segment simulation
self.Log_Arrays = {
# name of NE2 variable || name of SSC module variable
'time_log': 'time_hr', # logging time
'gen_log': 'gen', # electricity generation log
'q_nuc_thermal_log': 'Q_nuc_thermal', # thermal power from nuclear to HTF
'q_rec_thermal_log': 'Q_thermal', # thermal power from receiver to HTF
'p_cycle_log' : 'P_cycle', # PC electrical power output (gross)
'q_dot_nuc_inc_log': 'q_dot_nuc_inc', # Nuclear incident thermal power
'q_dot_rec_inc_log': 'q_dot_rec_inc', # Receiver incident thermal power
'q_pb_log': 'q_pb', # PC input energy
'q_dot_pc_su_log' : 'q_dot_pc_startup', # PC startup thermal power
'm_dot_pc_log' : 'm_dot_pc', # PC HTF mass flow rate
'm_dot_nuc_log' : 'm_dot_nuc', # Nuc mass flow rate
'm_dot_rec_log' : 'm_dot_rec', # Rec mass flow rate
'T_pc_in_log' : 'T_pc_in', # PC HTF inlet temperature
'T_pc_out_log' : 'T_pc_out', # PC HTF outlet temperature
'T_tes_cold_log': 'T_tes_cold', # TES cold temperature
'T_tes_hot_log' : 'T_tes_hot', # TES hot temperature
'T_nuc_in_log': 'T_nuc_in', # Nuclear HTF inlet temperature
'T_nuc_out_log' : 'T_nuc_out', # Nuclear HTF outlet temperature
'T_rec_in_log': 'T_rec_in', # Receiver HTF inlet temperature
'T_rec_out_log' : 'T_rec_out', # Receiver HTF outlet temperature
'T_cond_out_log': 'T_cond_out', # PC condenser water outlet temperature
'e_ch_tes_log' : 'e_ch_tes', # TES charge state
'op_mode_1_log' : 'op_mode_1', # Operating Mode
'defocus_log' : 'defocus', # Receiver Defocus fraction
'eta_log' : 'eta' # PC efficiency, gross
} if self.run_loop \
else {'gen_log': 'gen' # electricity generation log
}
# empty array to initalize log arrays
empty_array = np.zeros(N_sim)
# loop through keys in ^ dictionary, save the KEY name to NE2 module as empty array
for key in self.Log_Arrays.keys():
# meta: if we don't grab the copy of empty_array, it'll assign a pointer to the array!!
setattr( self, key, empty_array.copy() )
if self.log_dispatch_targets:
self.Log_Target_Arrays = {
'is_rec_su_allowed_in' : empty_array.copy(),
'is_rec_sb_allowed_in' : empty_array.copy(),
'is_pc_su_allowed_in' : empty_array.copy(),
'is_pc_sb_allowed_in' : empty_array.copy(),
'f_nuc_to_tes_target' : empty_array.copy(),
'q_pc_target_su_in' : empty_array.copy(),
'q_pc_target_on_in' : empty_array.copy(),
'q_pc_max_in' : empty_array.copy()
}
[docs] def update_Plant_after_Pyomo(self, Plant, pre_dispatch_run=False):
""" Update SSC Plant inputs with Pyomo optimization outputs from current segment simulation
Note:
self.run_loop == True (can be called outside loop)
self.is_dispatch == True
This method uses the optimization results from Pyomo and ensures that
the next SSC segment uses them throughout the corresponding SSC Horizon.
SSC normally takes single values for initial conditions (for the first hour
of the SSC Horizon), but it can also take in an array of values for each
step in the SSC Horizon. These are called "dispatch_targets". Steps are:
(1) extract solutions from Pyomo over the Pyomo Horizon,
(2) keep the solutions for the shorter SSC Horizon and
(3) save these "dispatch target" inputs to the Plant object for the
next SSC simulation segment.
Args:
Plant (obj):
original PySAM Plant module to be updated
pre_dispatch_run (bool):
are we updating the Plant for a pre- or post- dispatch run.
Recall that we only log post-dispatch Plant runs
Returns:
Plant (obj):
updated PySAM Plant module
"""
# number of times in full simulation
N_full = int((self.SSC_dict['time_stop']*self.u.s).to('hr').m)
# the heavy-lifting happens here -> return a dictionary of dispatch target arrays from Pyomo optimization results
horizon = self.pyomo_horizon if pre_dispatch_run else self.ssc_horizon
dispatch_targets = self.Dispatch_Outputs.get_dispatch_targets_from_Pyomo( \
self.current_disp_model, horizon, N_full, self.run_loop)
### Set Dispatch Targets ###
# setting dispatch targets to True so that SSC can read in Pyomo inputs
Plant.SystemControl.is_dispatch_targets = True
# extract binary arrays for receiver startup and standby
Plant.SystemControl.is_rec_su_allowed_in = dispatch_targets['is_rec_su_allowed_in']
Plant.SystemControl.is_rec_sb_allowed_in = dispatch_targets['is_rec_sb_allowed_in']
# extract binary arrays for cycle startup and standby
Plant.SystemControl.is_pc_su_allowed_in = dispatch_targets['is_pc_su_allowed_in']
Plant.SystemControl.is_pc_sb_allowed_in = dispatch_targets['is_pc_sb_allowed_in']
# extract power arrays for power cycle
Plant.SystemControl.q_pc_target_su_in = dispatch_targets['q_pc_target_su_in']
Plant.SystemControl.q_pc_target_on_in = dispatch_targets['q_pc_target_on_in']
Plant.SystemControl.q_pc_max_in = dispatch_targets['q_pc_max_in']
Plant.SystemControl.f_nuc_to_tes_target = dispatch_targets['f_nuc_to_tes_target']
return Plant
[docs] def create_dispatch_wrapper(self, PySAM_dict):
""" Creating a wrapper object for calling a class that creates dispatch parameters
** self.is_dispatch == True
(Called in __init__ of NE2 module)
This method creates an object whose class ultimately calculates and creates
parameters for Dispatch optimization. The reason this class exists separately
is that it gets overlaoded based on the PySAM module we are running. Depending on
the PySAM module, this method calls on a different Dispatch Parameter class that
is specific to the module.
Inputs:
PySAM_dict (dict) : dictionary of PySAM inputs from a script in /json directory
Outputs:
dispatch_wrap (obj) : wrapper object for the class that creates dispatch parameters
"""
self.DispatchParameterClass = DIP
dispatch_wrap = self.DispatchParameterClass( unit_registry=self.u,
SSC_dict=self.SSC_dict, PySAM_dict=PySAM_dict,
pyomo_horizon=self.pyomo_horizon,
dispatch_time_step=self.dispatch_time_step,
interpolants=self.interpolants)
return dispatch_wrap
[docs] def create_dispatch_params(self, Plant ):
""" Populating a dictionary with dispatch parameters before optimization
Note:
self.is_dispatch == True
(Called within simulation)
This method is creates the Dispatch Parameter dictionary that will be
populated with static inputs from SSC_dict as well as initial conditions
for Dispatch optimization. The initial conditions are continuously updated
if simulation is segmented.
Args:
Plant (obj):
original PySAM Plant module
Returns:
dispatch_wrap (obj):
wrapper object for the class that creates dispatch parameters
"""
# get the object
DW = self.dispatch_wrap
# run the setters from the GenericSSCModule parent class
params = GenericSSCModule.create_dispatch_params(self, Plant )
# extract array from full run of Plant for solar
assert hasattr(Plant.Outputs, "Q_thermal"), "Q_thermal was not found in the outputs of Plant."
self.Q_rec_guess = Plant.Outputs.Q_thermal
# extract array from full run of Plant
assert hasattr(Plant.Outputs, "Q_nuc_thermal"), "Q_nuc_thermal was not found in the outputs of Plant."
self.Q_nuc_guess = Plant.Outputs.Q_nuc_thermal
# set up copy of SSC dict
updated_SSC_dict = copy.deepcopy(self.SSC_dict)
updated_SSC_dict['Q_thermal'] = self.Q_rec_guess[self.slice_pyo_firstH]
updated_SSC_dict['Q_nuc_thermal'] = self.Q_nuc_guess[self.slice_pyo_firstH]
# these are NuclearTES-specific setters
params = DW.set_nuclear_parameters( params )
params = DW.set_time_series_nuclear_parameters( params, updated_SSC_dict )
# specific params for IndirectNuclearDispatch
params = DW.set_indirect_config_parameters( params )
# these are SolarTES-specific setters
params = SDP.set_solar_parameters( DW, params )
params = SDP.set_time_series_solar_parameters( DW, params, updated_SSC_dict )
# this sets the initial set for the NuclearTES
params = DW.set_initial_state( params )
return params
[docs] def update_Plant_after_SSC(self):
""" Update SSC Plant inputs with SSC outputs from previous segment simulation
** self.run_loop == True
This method uses the SSC end results from the previous simulation segment
and sets them as the initial conditions for the next SSC segment. As a
small note: some outputs are arrays that span the full year, however the
only relevant parts are the first indeces corresponding to the SSC Horizon.
All other values are typically 0.
"""
ssc_slice = self.slice_ssc_firstH
# field and receiver initial conditions
self.Plant.SystemControl.rec_op_mode_initial = self.Plant.Outputs.rec_op_mode_final
self.Plant.SystemControl.rec_startup_time_remain_init = self.Plant.Outputs.rec_startup_time_remain_final
self.Plant.SystemControl.rec_startup_energy_remain_init = self.Plant.Outputs.rec_startup_energy_remain_final
self.Plant.SystemControl.is_field_tracking_init = self.Plant.Outputs.is_field_tracking_final
# nuclear initial conditions
self.Plant.SystemControl.nuc_op_mode_initial = self.Plant.Outputs.nuc_op_mode_final
self.Plant.SystemControl.nuc_startup_time_remain_init = self.Plant.Outputs.nuc_startup_time_remain_final
self.Plant.SystemControl.nuc_startup_energy_remain_init = self.Plant.Outputs.nuc_startup_energy_remain_final
# TES initial conditions
self.Plant.SystemControl.T_tank_cold_init = self.Plant.Outputs.T_tes_cold[ssc_slice][-1]
self.Plant.SystemControl.T_tank_hot_init = self.Plant.Outputs.T_tes_hot[ssc_slice][-1]
self.Plant.ThermalStorage.csp_pt_tes_init_hot_htf_percent = self.Plant.Outputs.hot_tank_htf_percent_final
# PC initial conditions
self.Plant.SystemControl.pc_op_mode_initial = self.Plant.Outputs.pc_op_mode_final
self.Plant.SystemControl.pc_startup_energy_remain_initial = self.Plant.Outputs.pc_startup_energy_remain_final
self.Plant.SystemControl.pc_startup_time_remain_init = self.Plant.Outputs.pc_startup_time_remain_final
[docs] def update_Pyomo_after_SSC(self, Plant, params ):
""" Update Pyomo inputs with SSC outputs from previous segment simulation
Note:
self.run_loop == True
self.is_dispatch == True
This method uses the SSC end results from the previous simulation segment
and uses them to update the existing Dispatch parameter dictionary that
is ultimately sent to Pyomo. Essentially just updates the initial conditions
of the Dispatch parameter dictionary.
Args:
Plant (obj):
original PySAM Plant module
params (dict):
dictionary of Pyomo dispatch parameters
Returns:
params (dict):
updated dictionary of Pyomo dispatch parameters
"""
ssc_slice = self.slice_ssc_firstH
updated_SSC_dict = copy.deepcopy(self.SSC_dict)
# saving relevant end-of-sim outputs from the last simulation segment
updated_SSC_dict['rec_op_mode_initial'] = Plant.Outputs.rec_op_mode_final
updated_SSC_dict['rec_startup_time_remain_init'] = Plant.Outputs.rec_startup_time_remain_final
updated_SSC_dict['rec_startup_energy_remain_init'] = Plant.Outputs.rec_startup_energy_remain_final
updated_SSC_dict['nuc_op_mode_initial'] = Plant.Outputs.nuc_op_mode_final
updated_SSC_dict['nuc_startup_time_remain_init'] = Plant.Outputs.nuc_startup_time_remain_final
updated_SSC_dict['nuc_startup_energy_remain_init'] = Plant.Outputs.nuc_startup_energy_remain_final
updated_SSC_dict['T_tank_cold_init'] = Plant.Outputs.T_tes_cold[ssc_slice][-1]
updated_SSC_dict['T_tank_hot_init'] = Plant.Outputs.T_tes_hot[ssc_slice][-1]
updated_SSC_dict['csp.pt.tes.init_hot_htf_percent'] = Plant.Outputs.hot_tank_htf_percent_final
updated_SSC_dict['pc_op_mode_initial'] = Plant.Outputs.pc_op_mode_final
updated_SSC_dict['pc_startup_time_remain_init'] = Plant.Outputs.pc_startup_time_remain_final
updated_SSC_dict['pc_startup_energy_remain_initial'] = Plant.Outputs.pc_startup_energy_remain_final
updated_SSC_dict['is_field_tracking_init'] = Plant.Outputs.is_field_tracking_final
# these are specific to the initial states
updated_SSC_dict['wdot0'] = Plant.Outputs.P_cycle[ssc_slice][-1]
# extract time series from a previous SSC run
updated_SSC_dict['Q_thermal'] = self.Q_rec_guess[self.slice_pyo_currentH]
updated_SSC_dict['Q_nuc_thermal'] = self.Q_nuc_guess[self.slice_pyo_currentH]
# TODO: removing w_dot_s_prev references in all of Dispatch for now, might need to revisit later
# updated_SSC_dict['wdot_s_prev'] = 0 #np.array([pe.value(dm.model.wdot_s_prev[t]) for t in dm.model.T])[-1]
DW = self.dispatch_wrap
# set up Plant outputs dictionary
plant_dict = Plant.Outputs.export()
# updating the initial state and time series Nuclear params
params = DW.set_time_indexed_parameters( params, self.df_array, self.ud_array, self.slice_pyo_currentH )
params = DW.set_initial_state( params, updated_SSC_dict, Plant, self.t_ind )
params = DW.set_time_series_nuclear_parameters( params, updated_SSC_dict )
params = SDP.set_time_series_solar_parameters( DW, params, updated_SSC_dict )
return params